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Gaussian Quadrature Formulae for f-In (x)f(x) dx 

By Donald G. Anderson 

1. Introduction. The table of Gaussian quadrature formulae for integrals of 
the form 

f - In (x)f(x) dx 

contained in [1] is reproduced in [2], presumably as the best available. In connection 
with the solution of certain nonlinear integral equations [3], I had occasion to 
extend this table. Presented below are a few comments on the computer program 
used to generate the extended table and the results obtained at that time. 

2. Gaussian Quadrature Formula and Orthogonal Polynomial Generating 
Program. We consider quadrature formulae of the form 

b n 

J W(x f(x) dx - ZEHk(n)f( (n)) 
Jc=1 

for W(x) ? 0 ol a < x < b. Many tables of Gaussian quadrature weights Hk(n) and 
abscissae Xk(n) for various kernel functions W(x) and intervals a < x < b, have 
appeared in the literature [4, 5, 6 and many others; see 2, 7 and references therein]. 
Such Gaussian formulae possess two principal advantages in the context of the 
numerical solution of nonlinear integral equations: first, they provide a "near- 
optimum" utilization of a fixed number of samples of the integrand, and second, one 
can treat in this fashion problems with integrably singular kernels and/or infinite 
intervals of integration. The difficulties inherent in generating high-order, high- 
precision weights and abscissae, for a given kernel and interval, inhibit one from 
adapting the quadrature scheme to the problem at hand unless the required tables 
happen to be available. Consequently, a computer program capable of generating 
simply and cheaply low-order (n - 10) Gaussian formulae, or composites of such 
formulae, is of great assistance in producing problem-oriented quadrature schemes. 
Such a program can be based on the algorithm summarized below-an adaption 
of those considered in [1, 8]. 

Define an inner product by 
b 

(f, g) = W(x)f(x)g(x) dx. 

There exists a set of polynomials 

Pn(X) = A, xn + B JX- + (An F 

which are mutually orthogonal with respect to this inner product, that is, 

(pi,pj) = 0, fori j. 

These orthogonality conditions define the polynomials up to a multiplicative con- 
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stant which may be chosen to normalize the Pn in any convenient manner. For a 
binary computer, a convenient normalization is 

A = 2mn 

where the integer m can be chosen empirically, to keep (pn, pn) of order unity for 
moderate n. This normalization is easier to apply than one involving (pn , pn) 

directly, since An enters naturally in the recurrence relation for the p,1 described 
below. 

The quadrature sample points Xk(n) are the roots of pn(x); we define 

xO a and x(4+) -b. 

The following properties of pn are derived in [1, 8]: The roots Xk(n) are real and inter- 
laced such that 

(k (n < +1) (Xn 

for k-=0 1, * * , n. The quadrature weights Hk are given by 

(n) An ( Pn-1 pil P-) 
An-1 pn (Xk ) pn-l(xk 

We define 

po = Ao=1 and p=-A1(x-r1). 

The polynomials pn satisfy a three-term recurrence relation 

p.(x) - A (x - rn)pn-l(x) - Pn2(X), 
An-1 

for n = 2, 3, * . . The recurrence coefficients are given by 

r. =un/tn 7 

for n = 1, 2, .. land 

An An_2 tn 
Sn = A2 t . 

for n=2,3, ,where 

Un= (XPn-1 P Pn-1) 

and 

tn= (Pn-1 X Pn-1) 

The particular class of quadrature formulae of interest can be defined by a sub- 
program which evaluates the moments of the kernel 

Mla= (xl, 1), 

for 1 = 0, 1, *, 2n - 1. In simple cases, the Ml can be evaluated directly as 

elementary functions of 1; in more complicated cases, it may be necessary to approxi- 
mate Ml numerically, and the program will operate with an "effective" kernel differ- 

ing somewhat from the original kernel. The Pn can conveniently be represented by 
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(n + 1 )-vectors of their coefficients; a recurrence relation for the components of the 
(pn) vector can easily be written down from that for the pn polynomial above. If 
we define the ith component of the vector as (pn)i, with (pn)i= 0 for i < 0 and 
i > n, and use the normalization condition above, we obtain 

( Pn)i = 2 (pn-1 )-1 - 2mrn(pn.-)i - Sn(Pn-2)i , 

forn = 1, 2, * ; (po)o was defined above as unity. The inner products t. and Un are 
then given by 

n-1 

tn = Zd (pn-I)i(Pn-1)jMi+;, 

n-1 

Un = E (Pn-1)i(Pn-l)jMi+j+1i 
i,j o 

It is convenient to generate the formulae successively for n = 1, 2, * , since 
the root interlacing property provides bounds for the XA(n) at each stage. Since Pn' is 

required for the evaluation of Hk (n),a Newton-Raphson iteration can be used to 
find the roots, and the Hk(') follow immediately. In the critical recurrence calcula- 
tions, where errors can accumulate, double precision arithmetic is desirable, even to 
obtain only single precision results. It is somewhat more accurate to use the recur- 
rence relation and its derivative with respect to x to evaluate Pn and pn', rather than 
using the coefficients (pn)i and synthetic division. In the recurrence calculation, 
there is a tendency for a loss of significant figures in the subtraction of numbers 
which are approximately equal; hence, the algorithm has rather adverse roundoff 
error properties. 

A useful byproduct of the calculation is the set of recurrence coefficients r., sI, 
and t,, . The polynomials pi are orthogonal under summation over the roots x k) with 
metric H ()I since the Gaussian quadrature formula is exact forf(x) a polynomial of 
degree 2n - 1 or less- 

n 
EHk (npi ( XkW)p j( Xk W) =t ibijX 

k=1 

for i, jO0, 1,I , -.1, where Sj is the Kronecker delta symbol. Consequently, 
the pi are often useful for generating least-squares approximations [7]. As a check 
on the calculation, one can compute, for each n, the maximum modulus of the differ- 
ence between the orthogonality sums and their nominal values. When the program is 
performing properly, these test residuals contain only a few bits of roundoff error. 

The basic algorithm above can be extended to facilitate the development of 
composite quadrature formulae made up by applying the algorithm to a set of sub- 
intervals. Perhaps the most useful extension is the inclusion of the Radau and 
Lobatto cases, where one or both endpoints of the interval of integration are as- 
signed as quadrature sample points-the procedure is described in [1, 8]. Since a 
quadrature formula can be regarded as approximation of the kernel by a weighted 
sum of Dirac delta functions, one can assign quadrature weights and abscissae 
simultaneously. Convenient cancellations can thereby be arranged at the interfaces 
between sub-intervals. 

As an example of the results available from such a program, consider the class of 



480 DONALD G. ANDERSON 

integrals of the form 

f - In (x)f(x) dx. 

For this particular kernel and interval, we obtain 

ml= (1 + 1) 2, 

and the quadrature weights and abscissae of Table I. A number of other classes of 
integrals have been considered, but the results are not recorded here since they are 
not of sufficiently general interest and are easily regenerated. 

There is a maximum n for which the program is useful; typically, the algorithm 
fails because the Xk(') drift off the real axis: Even before this maximum order is 
reached, the results obtained will deviate from the exact quadrature weights and 
abscissae due to roundoff error. Nevertheless, the test residuals may still be accept- 
ably small, and the corresponding "near-optimum" quadrature formulae acceptably 
accurate [9]. 

3. Conclusion. While a program of the class described above cannot generate 
high-order quadrature formulae with high precision, it can very simply and cheaply 
generate low-order composite formulae. Such a program is useful precisely because 
it is relatively inexpensive to generate quadrature schemes adapted to a particular 

TABLE I 
1 ~~~~~n 

in (x)f(x) dx H I Hn)f (x 
O ~ ~~~~~~ kee k-1 

nHn xn) HI n) 

2 0.11200880 0.71853931 8 0.13320243 (-1) 0.16441660 
0.60227691 0.28146068 0.79750427 (-1) 0.23752560 

3 0.63890792 (-1) 0.51340455 0.19787102 0.22684198 
0.36899706 0.39198004 0.35415398 0.17575408 
0.76688030 0.94615406 (- 1) 0.52945857 0.11292402 

4 0.41448480 (-1) 0.38346406 0.70181452 0.57872212 (-I) 
0.24527491 0.38687532 0.84937932 0.20979074 (-1) 
0.55616545 0.19043513 0.95332645 0.36864071 (-2) 
0.84898239 0.39225487 (-1) 9 0.10869338 (-1) 0.14006846 

5 0.29134472 (-1) 0.29789346 0.64983682 (-1) 0.20977224 
0.17397721 0.34977622 0.16222943 0.21142716 
0.41170251 0.23448829 0.29374996 0.17715622 
0.67731417 0.98930460 (-1) 0.44663195 0.12779920 
0.89477136 0.18911552 (-1) 0.60548172 0.78478879 (- 1) 

6 0.21634005 (-1) 0.23876366 0.75411017 0.39022490 (-1) 
0.12958339 0.30828657 0.87726585 0.13867290 (- 1) 
0.31402045 0.24531742 0.96225056 0.24080402 (-2) 
0.53865721 0.14200875 10 0.90425944 (-2) 0.12095474 
0.75691533 0.55454622 (-1) 0.53971054 (- 1) 0.18636310 
0.92266884 0.10168958 (-1) 0.13531134 0.19566066 

7 0.16719355 (-1) 0.19616938 0.24705169 0.17357723 
0.10018568 0.27030264 0.38021171 0.13569597 
0.24629424 0.23968187 0.52379159 0.93647084 (-1) 
0.43346349 0.16577577 0.66577472 0.55787938 (-1) 
0.63235098 0.88943226 (-1) 0.79419019 0.27159893 (-1) 
0.81111862 0.33194304 (-1) 0.89816102 0.95151992 (-2) 
0.94084816 0.59327869 (-2) 0.96884798 0.16381586 (-2) 

Note: Numbers are to be multiplied by the power of ten in parentheses. 
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problem. Furthermore, the programming involved is simple enough to be assigned 
as a laboratory exercise in a numerical analysis course. As an example, quadrature 
formulae adapted to a logarithmically singular kernel are given. 
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Quadrature Formulas Using Derivatives 

By Lawrence F. Shampine 

For k odd, we shall derive a new quadrature formula of the type 
(k-l) /2 f (2j)(0\ 

df(x) dx 2 E f [1 - cj] + X a1[f(xz) + f(-xi)], 
j=O (2j + 1)! 1= 

which is exact for all polynomials of degree up to 4m + k - 2. A similar formula 
holds for k even. The formulas closely resemble those of Hammer and Wicke [1]: 
for k odd, 

I (k-i)/2 f(2j)(0) +Z a 
(XI) L fx) dx -- 2 E ( f ' + YE az[f~k(l ~)-l] J1JkXJ2X~hJj=O (2j + 1)I 1-1 

and a similar formula for k even. Their formulas require the use of nonclassical 
orthogonal polynomials. The formulas stated above are derived very simply with 
the use of Jacobi polynomials and would, presumably, be useful in situations similar 
to those envisioned by Hammer and Wicke. 

f(x) can be split into even and odd parts. The form of the formula is such as to 
integrate the odd part exactly. Let us write f(x) in the form 

f(X) = E X2 
j-o (2jW 
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